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A b s t r a c t - A  study of the instabilities in the interaction of an electrostatic field with a thin liquid 
film flowing under gravity down an inclined plane is presented. First, the long-wave stability conditions 
are studied by perturbing the evolution equation of film height about its steady-state solution. Three 
limits of flow systems are considered, i.e., static state, Reynolds number Re=O(1) and Re=O(1/{). 
Here {(~1)  is the ratio of the characteristic length scale parallel to the flow to the primary film 
thickness. Next, the long-wave behavior of the thin film flow is examined with the electrostatic poten- 
tial of a Gaussian function in the two limits of Reynolds number, i.e., Re=O(1) and Re TMO(1/{). 
These results are also compared with those from a full-scale explicit calculation. Finally, wave-growth 
rates are calculated from the Orr-Sommerfeld equation to show the stability to wave number with 
and without the electric field. The effect of the electric field is to lessen the range of the wave 
number in which the thin film flow remains stable. 

INTRODUCTION 

The investigation of the thin liquid-film flow has 
attracted much attention for many years. Such thin 
layer of liquid acts an important role in many engi- 

neering processes due to its high transfer surface of 
heat and mass in comparison with the w)lume of 
through-flow. Wben a thin liquid film flows under grav- 

ity down an inclined plane, the film becomes unstable 

as Reynolds number  increases, that is, traw~ling waves 
appear on the free surface. To determine this instabil- 
ity onset has been a big research topic. The study 

of the stability of thin liquid layers draining down an 
inclined plane was initiated by Yih Eli  and Benjamin 

[2]. Their  analysis identified regimes of linear stabil- 
it}" of the film as a function of the Reynolds number  
and the angle of inclination. Yih E3] employed long- 
wave asymptotics, and thereby determined a critical 
Reynolds number. Benny [4] derived a long-wave 

nonlinear evolution equation for the loca thickness 
of a thin, isothermal liquid layer on a plane surface. 
After this time a great number  of extensions of the 
isothermal case has been made, such as those by Lin 
{-5], Gjevik E6], Pumir et al. [7],  and Alekseenko et 
al. [8],  to name only a few. Their  quasilinear investi- 

*To whom all correspondences should be x~ddressed. 

Fig. I. The coordinate scheme of the plane flow under 
an electrostatic field. 

gations are for the height of the film as a function 
of time, which is solved either numerically or analyti- 

cally. 
The objective here is to consider the linear stabili- 

ties when an electrically conductive liquid layer flows 
under  gravity down an inclined plane o;r which an 
electrostatic field is turned on through a chargeable 
foil (see Fig. 1). This kind of flow system has the fop 
lowing research background. The study on the inter- 
action of an electrostatic field with a thin liquid film 

was started by Kim et al. [-9] for a new design of 
lightweight space radiator to replace present-day 
heavy space radiator which employs armored heat pi- 
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pes built in by the wick materials such as nickle, cop- 
per and titanium, etc. The proposed new concept con- 
sists of an enclosed metallic-foil/ceramic-cloth, thin- 
film, pumped-loop radiator, in which leaks of the liq- 
uid-metal coolant caused by punctures from most mic- 
rometeorites and space debris are prevented by detec- 
ting the leak and then switching on an internal elec- 
trostatic field, that is, the applied electrostatic field 
makes the pressure at the puncture sufficiently below 
the pressure outside the radiator minus the capillary 
pressure and stops the leakage. In order to under- 
stand this basic effect of the electrostatic field on the 
film flow and to establish the feasible working ranges 
of the radiator, Kim et al. [10, 11] investigated two 
kinds of flow systems of a thin liquid layer with evolu- 
tion equations for film thickness derived from the 
equations of motion with proper approximations. In 
the first, the liquid film in the presence of a gravita- 
tional body force flows along an inclined flat plate with 
a specified initial film height. In the zero-gravity sec- 
ond case, the liquid flows down the interior surface 
of a rotating conical pipe, where the entrance film 
thickness is specified at a constant angular velocity 
and the centrifugal force replaces the gravitational for- 
ce. The pressure distribution on the solid wall was 
also calculated to check the possibility to prevent leak- 
age of the coolant from a puncture. The result is that 
the radiator will be allowed to have thinner, of no 
armor, and hence there will be a considerable weight 
savings. Important benefits of this idea could accure 
to the space station, which is reported to be currently 
overweight ~nd underpowered. For high-power requi- 
rements, such as propulsion systems, military applica- 
tions, and large scale manufacturing and life support, 
this technology is considered to be critical. 

In the following sections, long-wave stabilities are 
investigated by perturbing the evolution equation of 
film height about its steady-state solution in the limits 
of three cases of flow systems, i.e. static case, small 
and large Reynolds numbers. Here the static-state 
flow is treated as an extreme case of the film flow 
down an inclined plane. In addition, for the long-wave 
behavior of the flow systems the film height interac- 
ting with the electrostatic potential of a Gaussian func- 
tion is plotted and compared with the result from a 
full-scale code. Wave-growth rates are also calculated 
to obtain stable wave numbers from the Orr-Sommer- 
feld equation without the thin film limits. 

ELECTROHYDRODYNAMIC ANALYSIS 

The flow is considered of an incompressible, vis- 

cous, thin liquid film draining down an inclined plane 
with gravity g. The plane is assumed to make an angle 
[3 with the horizontal, and the two-dimensional coordi- 
nate system is chosen such that the x axis is paraUel 
to the plane and the y axis is perpendicular to it. 
Above the liquid film there is a vacuum, where at 
a distance H from the plane is a charged plate of 
length l, which i: parallel to the x axis. The film thick- 
ness in the primary flow is defined as d and i-',=d/L, 
where L is the characteristic length scale parallel to 
the film (Fig. 1). 

The electric field is satisfied by the Laplace's equa- 
tion, 

V% = 0, (1) 

for the electric potential 0(x, y) in the fluid, @'i and 
for that in the vacuum region, 0". To solve this equa- 
tion the following boundary conditions are needed: 

0(x, H)= FH~(x), for y=  H, 
= 0, for y = 0, (2) 

and along the free surface y=h(x, t) the interracial 
boundary conditions are 

r h, t)=O"(x, h, t), - ~  =8,, On" (3) 

Here e~ is the dielectric constant of the fluid, ~(, is 
that of the vacuum and the partial derivative is in 
the direction of the outward unit normal, n, to the 
interface. 

The independent and dependent variables used in 
the governing equations of motion and the evolution 
equations are expressed in non-dimensional forms by 
letting d be the unit of length in the y direction, L 
the unit of len~h in the x direction. U,~, whiich will 
be chosen later, the unit of the x-direction velocity 
u, ~U~ the unit of the y-direction velocity v, L/U,~ the 
unit of time t, pU,~ ~ the unit of pressure p where p 
is the fluid density, F the unit of electric field and 
FH the unit of electrostatic potential. ExtensNe calcu- 
lations (Kim et al. [10]) have been performed to ob- 
tain the film thickness and the bottom pressure as 
functions of both space and time. Three meti~ods of 
calculation were employed. For a Reynolds number 
of O(1). inertial effects may be neglected at leading 
order, and a long-wave approximation is appropriate. 
The Reynolds number Re is defined as 

Re pU*~d (4) 
P 

where I~ is the viscosity of the fluid and U~,: pgd2sin([3) 
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/3p is the average entrance velocity. In this limit, one 
can derive a nonlinear evolution equation for the 
height h(x, t) of the film accurate to O(~2). This equa- 
tion has been studied extensively by Kim et al. [10] 
and the result is 

Oh +3he 0h +{ 0 0 ( @ R e h ~ O h  _cot(13)h:~Oh 
0t 0x dx ~ a 0x 0x 

(h30~-x [E%]~) = O, (5) 

where E$ is the normal component of the leading-or- 
der electrostatic field at the surface of the film y=  h(x, 
t), the capillary, number is defined by Ca=2pUo/a 
where r is the surface tension and K, assumed to 
be order one, is a dimensionless electrostatic field con- 
stant: 

K =  adF2 (6) 
16npU~/ 

In Eq. (5) the coefficient ~2/Ca is assumed to be 
order unity. The placement of the charged foil has 
to be considered to get the Eo,. The electric potential 
along y=  H depends on the slow x scale and the char- 
acteristic length scale in the y direction in the vac 
uum region is d. Hence, the leading-order electric 
field can be transformed from the electrostatic poten- 
tial at leading order in ~, i.e., E#,=H(a(N/ay),  where 
r is calculated from the Eq. (1) with the boundary 
conditions (2) and (3): 

Ol ;=*(x){l+(y H)[h(x, t ) ( ~ - 1 ) + H I  '}, 

for h(x, t)<y<H. (7) 

For the applications a larger Reynolds number may 
be necessary. For this large Reynolds number, i.e., 
Re = O(1/~), the inertial terms appear at lowest order, 
and it is necessa~ to use the Karman-Poblhausen ap- 
proximation to obtain an evolution equation. This has 
successfully been applied to other thin film problems 
(Thomas et al. [12] and Rahman et al. [13]). The 
local x-component velocity is approximated by 

3q J" y 1 i' Y ~2] 
u: h ~ - ~ - ~ )  j, (8) 

where q is the local flow rate defined by 

q f,, u dy. (9) 

One then obtains a coupled set of nonlinear hyperbolic 

equations accurate to O({) for the height h and flow 
rate q. These evolution equations have been derived 
by Kim et aL [10] and the results are 

Oh _ 0q (10) 
0t 0x 

and 

0q 6 00_/q z) 2h ~{,  1 ~,, ,2 

at ~- 5 Ox \ - h  ) : R - - " l  * - ~7 / Ox 'r'~ 

3 q cos(f3) ( h  h0h / 
R h 2 + Fr - 2 - \ B  0x/ '  (11) 

where g , -  ~K = O(1), R = ~Re = O(1), B = @ot(D = O(1) 
and the Froude number is given by 

U0 
Fr= ~ - j .  (12) 

The previous two methods have shown asymptotic 
solutions of the electrohydrodynamic problem. This 
approach was taken because the system represents 
a complicated nonlinear moving boundary problem 
whose solution involves solving the Navier-Stokes 
equations coupled to the electrostatic equations.. A com- 
plete numerical solution of this problem is still very 
difficult. Suppose that the charged foil is far away from 
the plane of the flowing film, this idea decouples the 
electrostatic problem from the fluids problem. Hence, 
a direct solution of the Navier-Stokes equations, using 
the finite-difference code SOLA [14] based on the 
marker-and-cell method, can be obtained in the pres- 
ence of the electric field. 

In the early study [I0], for the electrohydrodynam- 
ic calculations the dimensionless electrostatic potential 
along the charged foil I, i.e., the value of (l~(x) was 
used as i, that is, this was a specific value used for 
solving the Laplace's Eq. (I) of the electric potential 
and the solution was found in Morse and Feshhach 
[15]. However, in order to simulate a slowly varying 
potential which will make a long-wave disturbance on 
the thin-film flow a potential with a Gaussian function, 
qb(x)=e ,,~-xo)'~ where a is an arbitrary constant and 
x. is the center of the electric foil, will be used later 
on this work to show the film-thickness variations to 
both space and time. 

L I N E A R  S T A B I L I T Y  

The linear stability for the liquid film flow down 
an inclined plane was studied by Benjamin [2] and 
Yih [3]. In a long-wave limit their analysis identified 
regimes of linear stability of the film as a function 
of the Reynolds number and the angle of inclination: 
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Re<5cot([3). (13) 

The aim here is to generalize this result to include 
the effect of the electrostatic field on the film flow. 
For this purpose, three cases of flow systems are con- 
sidered:stat ic case (fl=0), Re=O(1) and Re-O(1/~).  

In addition, without the thin-film limit the Orr-Som- 
merfeld equation is solved by the long-wave approxi- 
mation. Recently the effect of a magnetic field on fluid 
flow down an inclined plane has been studied by Shen 
et al. ~16]. 
1. S t a t i c  C a s e  : 13 = 0 

In the static case with ~ 0, there is no driving 
force for the liquid film to flow along a flat plate. When 
an electrostatic field is turned on through a charge- 
able foil, the stationary, fluid will start to move toward 
the center of the foil and have a symmetric shape 
like a convex meniscus below the foil. In this case 
the fluid filling up the peak comes from both ends 
of the plate. There exists a similar approach used to 
the lubrication theory for the Eq. (5) except that there 
is none of the inertial effect and the primary flow due 
to gravity. The evolution equation is 

Oh + ~ _ _ ~ , [  1 Re Oh 2 ~2 F'h 
Ot dx ~ 3 Fr 2 Ox + 3  Ca c'~x 3 

+ 2 K [ 1 - 1 ]  d ~ x  E~.]2)h3} : O. (14) 

To find a stability condition of this static problem the 
Eq. (14) needs to be perturbed about its steady-state 
solution h,. Letting h(x, t)= h,(x)+ h(x, t), where h(x, 
t) represents the small-height disturbance, the film 
thickness at steady state is reduced to 

E : : l + 2 ~ e  ~ ~ d2h- '+2Fff  ~ { L-l) 
�9 Ca dx e Re K 1 -  

(E~;,) ~, (15) 

where the boundary conditions that h~--+l and E;;.--*0 
as x--~_+ co (with x~=0 as the center of the foil) are 
used. And the linearized disturbance equation for h(x, 
t) becomes 

at 3 0x ~ - h / t ~  ~x -2Caa  ax:' /J" (16) 

With setting h(x. t)= e"O(x) and substituting into the 
Eq. (16), the eigenvalue c is determined to get a linear 
stability condition of this problem for all ranges of 
the parameters, The result after proper manipulations 
is given by 

C ~ - - ~  

f ~ 3 / Re ., 3~ 2 2Fr 2 ~4 ) 
Re Ca 2 0 ~  ~�9 dx 

, (17) 3f Frz ~20xZ)dx 
~ Re Ca 

where the subscript x denotes the derivative with re- 
spect to x. As we can see, the value c is negative for 
all the parameters. Hence this static problem is always 
linearly stable. The Eq. (17) has only stabilizing effects 
of gravity and surface ~ension. 
2. Orde r  One Reynolds  N u m b e r :  R e = O ( 1 )  

Considering a linear stability analysis in the limita- 
tion of lubrication theory, the Eq. (5) is perturbed 
about its steady-state solution, i.e., by setting h(x, t) = 1 
+h(x, t), where the small disturbance h is assumed 
a sinusoidal function h e,~, ,t~. Here ct~0 is the wave 
number of the disturbance and c is the complex wave 
speed. The electric field E~ is obtained from the Eq. 
(7), i.e.. ES,,= H~(x)/{H+ h(1/a-1)}.  The effect of va- 
riations of h on the electric field is accounted. And 
for the similar disturbance in 0" as in the liquid film, 
the length of the foil is assumed to have the same 
dimension as that of the inclined plane, i.e., l ~ o .  Sup- 
posing that O(x)= 1, the evolution Eq. (5) is linearly 
stable when 

R 5 .^. 10. W(1-1/~,)  2 5 ~2 
e < ~-cot(15)-- ~ K ~ / c , +  H _ 1)7 + ~ C~a- cte. (18) 

Here we can see that the electric field is a destabili- 
zing effect but the surface tension makes the film sta- 
ble. If there are no electric field and surface !Eension 
in the above equation, the result has the same stability 
condition derived by Benjamin and Yih. 
3. Large Reynolds  N u m b e r :  Re=O(1/~)  

As with the order unity Reynolds number case, a 
linear stability analysis for this Re O(1/~) case can 
be done. The definitions of the dimensionless con- 
stants show that 

Re sin(13) 
3Fr~ - 1. (19) 

Therefore a steady-state solution of the Eqs. (10) and 
(11) exists of the form h=  1 and q=  1. Letting q repre- 
sent the perturbation of h from the uniform height, 
i.e.. h 1 - q ,  the linearized disturbance equation can 
be derived from the nonlinear hyperbolic Eqs. (10) 
and (11): 

O-'q 
152 O~t0 ~ + + 6 1  - + 3B 6K(1 - 1/~,)-'~!-'_ _ / 

Off , 5 R R[1 /c , ,+H l JV  

0~rl ~-'3 O q_ ~ 9 c3q _0. (20) 
dx ~ R 0t R Ox 
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Looking for a time harmonic solution proportional to 
e '"~ % where a is the real wave number and c -  c~+ic, 
is the complex frequency, the dispersion relation from 
the Eq. (20) is given by 

2 12 + [  6 3B 6K(1-1/e/)2" z ~] 

+ a 3 ~  ( c - 3 ) = 0 .  (21) 

The condition for onset can be determined from the 
Eq. (21) by requiring that the first and the second 
derivatives of c, with respect to ct vanish exactly. The 
result of this calculation is that the critical Reynolds 
number, Re,, and the wave number, o~ are given 

by 

Re,. = cot(13)- 2K H~(1-1/~/)~ [1 /c j+H 1] ~ , a~=0. (22) 

The critical Reynolds predicted in this limit differs 
from that in the order unity Reynolds number limit. 
This situation comes from the different magnitude of 
the Reynolds number and the approximation (8) used 
for the velocity profile. Without the electric field this 
flow system is studied by Prokopiou et aL El7]. 
4. Orr -Sommerfe ld  E q u a t i o n  

In the absence of the thin-film limit, that is, assum- 
ing that the length scales in the vertical and horizon- 
tal directions are the same (~ 1), that the length of 
the plate is infinite, and that ~ (x )=  1 as in the thin- 
film cases, a steady parallel flow can be found with 
the velocity and pressure given by 

1 2 Re sin(J3) ( y _ _ ~ y ) ,  
uo Fr 2 

cos(13) ' 2KH-~ ( 1 1](' O~ ]~ 
P o : ~ -  ( 1 - Y ) •  , 7 , -  / , - ~ / '  (23) 

and the electric potential [-10, 11, 18] 

, [ ; = l + ( y - H )  + H - 1  , for l < y < t t .  (24) 

Following Benjamin [2] and Yih [3], u=  uo ~-fi, v=~,  
P = p0 + P, h = 1 + [i and 0 ~ = 01; +/5 ~ are introduced into 
the equations of motion and then solved for the same 
order of magnitude, where the small-amplitude distur- 
bances are denoted by an overtilde. For the linear 
stability the following time-harmonic assumptions are 

applied: 

fi-- ~.(y)e,~(. -,. 
= _ iml/(y)e~U--a~, 
= f(y)e,~ a!, 

l:i = g(y)e ' ~  a~, 

~, = q(y)e,~a-a~, (25) 

where the prime represents the derivative with y. Fi- 
nally the linearized Navier-Stokes equations are re- 
duced to the Orr-Sommerfeld equation for g:=V(Y), 

V""(Y) - 2ct2v"(Y) + a4~(Y) = iaR e { (u0 - c) [ ~" - a2~ 

(Y)] - u~v'}. (26) 

The boundary conditions along y = 0  are 

~t(0) = W'(0) = 0, (27) 

while along y=l .  

~"(1) + ( a 2 -  ~ _ ~ ) ~ ( 1 )  = 0 (28) 

and 

g'(D Re(c_  3 ) r  ,,(1) - 3 a  c o t ~ =  + 

c / ~ -a  + 

where the constant W is given by 

l(!+._ 1) 
\ c//x ej 

{ 1  tanh(a)+tanhEa(H-1) ] t  -~. (30) 

This is a linear eigenvalue problem for the complex 
eigenvalue c=c,+ic , .  In the long wave limit, i.e., a---~0, 
the uniform flow is stable if 

Re<5cot(13)-  ~KW, (31) 

where in the long wave limit, 

W ~  H2(1-1/~r)~ (32) 
F(1/~3-t-H- 1] :~ ' 

This is the same result as in the case of Re=O(1) 
except for the effect of the surface tension. The eigen- 
value problem (26)-(29) is solved numerically in the 
next section by using a shooting method [-19]. 

N U M E R I C A L  C O M P U T A T I O N S  

1. D e f o r m a t i o n  of  Fi lm Surface  
In the previous section 2 two asymptotic evolution 

equations in the film thickness h are represented for 
the electrohydrodynamic calculations. This approach 
was taken because the system contains a complicated 
nonlinear moving boundary problem coupled to the 
electrostatic equation. Assuming H ~ I  so that the 
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Fig. 2. Free surface profiles determined by Eq. (5) for t=  
0.01 n, n=1,- . . ,25 with F=0 .5  kV/cm, 13=0.1 
rad., d=O.15 cm, g = 2  cm/sec z, o = 0 ,  Re=3.78,  
K--0.9, H=13(1 /3 ) ,  and the other parameter for 
lithium at 700 K. 

Fig. 3. Free surface profiles determined by SOLA for t =  
0.01 n, n=1,- . . ,25 with F=0 .5  kV/cm, 13=0.1 
rad., d=0 .15  cm, g = 2  cm/sec 2, c~=0, Re=3.78,  
K=0.9 ,  H =  13(1/3), and the other parameter for 
lithium at 700 K. 

charged foil is far away from the plane of the flowing 
film, the electrostatic problem is decoupled from the 
fluid problem. Hence, if a solution of the electrostatic 
problem is determined, the Navier-Stokes equations 
can be solved with a known forcing function of the 
electric field. This moving boundary problem is solved 
by using the full-scale code SOLA [14]. In order to 
simulate a slowly varying potential, ~(x) is set by 
e t00~ 1,,3~. Here the location of the charged-foil center 
is taken as x - 1 / 3 .  

The solutions of the approximate long-wavelength 
models (5), and (10) and (11) will now be compared 
with the solutions from the SOLA. Clearly, solving 
either (5) or (10) and (11) is a much easier and faster 
task than solving the Navier-Stokes equations. Hence, 
if the approximate models can be shown to make good 
predictions in the range of interest of parameters, this 
justifies their usefulness. U0 is chosen as the mean 
velocity of a steady parallel flow down an inclined 
plane and proportional to d 2. Here the physical param- 
eters are taken for lithium at 700 K (p=0.0038 poise, 
o =  363.2 dyne/cm, and p=  0.493 g/cm 3) and the fluid 
is a perfect conductor, i.e., e/-~oo. As U0 varies, Re, 
Fr, Ca vary linearly with Uo, while K is inversely pro- 
portional to U0. For fixed electric field F, K changes 
as the Reynolds number changes. The effect of surface 
tension is neglected because there is no regions of 
large curvature on the free surfaces with the slowly 
varying potential and the main concern is to show 

how well solutions of the approximate models com- 
pare with the solutions of the full system of equations. 
The solution of the lubrication model (5) begins with 
a fourth-order Runge-Kutta, and then continues with 
the Hamming's predictor-corrector method. The non- 
linear hyperbolic Eqs. (10) and (11) are solved by 
using a two-step Lax-Wendroff method with diffusion 
and antidiffusion [203. The steady flow down an in- 
clined plane is chosen as an initial condition and the 
upstream boundary condition is steady Poiseuille flow. 
At t=  0 the electric field is turned on and the interface 

is determined. 
To calculate the change of the unsteady free surface 

when Re-O(1) ,  the following properties, i.e., F=0.5 
kV/cm, 13-0.1 tad., d=0.15 cm, g = 2  cm/sec ~ and o =  
0, are taken. This will give us Re=3.78, K=0.9, ~= 
0.0025 and H =  13(1/3). In Fig. 2 the dimensionless 
film thickness h is plotted from the Eq. (5) as a func- 
tion of x for t,,=0.01 n, n=1,..-,25. As t increases the 
initial perturbation in height grows in absolute magni- 
tude until a steady state is approached. As vce can 
expect from the linear stability condition (18), the per- 

turbed wave becomes stable at this Reynolds number, 
i.e., Re,---~8.22 as c~--~0. To compare this approximate 
model with the exact numerical prediction, tile film 
height h from the SOLA is plotted in Fig. 3. And for 
a clear view the steady-state lubrication result is plot- 
ted in Fig. 4 along with the last plot of Fig. 3. The 
surface deformation is similar to that of the exact an- 
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Fig. 4. Free surface profiles determined by the steady-state 
lubrication result (---) and the last computed time 
step shown in Fig. 3 ( - - ) .  

Fig. 6. Free surface profiles determined by SOLA for t =  
0.01 n, n=  1,...,20 with F = 2 0  kV/cm, 13=0.1 tad., 
d=0 .15  cm, g = 1 0 0  cm/sec 2, cs=0, Re--189.0, 
K=28.87,  H--13(1/3) ,  and the other parameter 
for lithium at 700 K. 

Fig. 5. Free surface profiles determined by Eqs. (10) and 
(11) for t---0.Ol n, n :  1,...,20 with F = 2 0  kV/cm, 
[3=0.1 rad., d : 0 . 1 5  cm, g--100 cm/sec 2, ~ = 0 ,  
Re=189.0,  K=28.87,  H=13(1 /3) ,  and the other 
parameter for lithium at 700 K. 

swer except that the absolute magnitude of the pertur- 
bation in height is a little less. This means that in 
the real system the inertial force is a slightly more 
dominating than the viscous effect at this Reynolds 
number. 

For a large Reynolds number  case: Re::O(1/~), an 
increased gravity g =  100 cm/sec 2 is applied and at the 

same time the electric field is increased to 20 kV/cm 

for the compensation of the decreased K as U0 increa- 
ses, while keeping the other parameters as in the 
R e - O ( 1 )  case. The effect of this is to raise the Rey- 
nolds number  and the dimensionless electrostati[c con- 
stant, to Re=189.0, and K=28.87. For this case the 
t ime-dependent Karman-Pohlhausen model (10) and 
(11) is solved and plotted in Fig. 5 for t~=0.01 n, n =  
1,.-.,20. As in the smaller Reynolds number  case, the 
height of the fihn under the foil at first decreases 
with increasing x and then increases. The film will 
now rise up to about 20% of its equilibrium ]height. 

The maximum height at steady state is around h =  
1.15. As time increases note that a disturbance will 
begin along the precursor through, this will develop 
into a shock. We can expect this instability from the 
result of the linear stability condition (22) at this large 
Reynolds number. However this event is harmless to 
this system, since the shock occurs downstream of 
the foil and finally it will be washed away. ][n Fig. 
6 the result from the exact numerical solution :is plot- 
ted. There  are qualitative similarities in the shape and 
speed of propagation of the disturbance. There are 
some quantitative differences. In particular, the shock 
appears to develop in a different way. The time-de- 
pendent problem is only computed up to the time of 
formation of the shocks. Both models will approach 
a steady-state solution under the foil. In Fig. 7 the 
steady-state film thickness from the Karman-Pohlhau- 
sen model is plotted along with the last computed re- 
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Fig. 7. Free surface profiles determined by the steady-state 
Karman-Pohlhausen result (---) and the last com- 
puted time step shown in Fig. 6 ( - - ) .  

Fig. 9. ct vs ci for Re=20, [3=0.1 tad., and H=13(1/3).  
(a) K=O and C a = 5 . 4 •  -s. (b) K=6.82• 
and C a = 5 . 4 •  10 s. (c) K=O and Ca=oo. (d) K= 

6.82• 103 and Ca=c~. 

Fig. 8. c~ vs ci for Re=5, [3=0.1 rad., and H=13(1 /3) .  
(a) K = 0  and Ca=I .35X 10 s. (b) K=2 .73•  104 
and Ca=1 .35•  -s. (c) K = 0  and Ca=oo. (d) 
K:2 .73•  and Ca=oo. 

sult shown in Fig. 6. Note that the disturbance under 
the foil is very close to the exact profile. The approxi- 
mation model has a good prediction of the real inter- 
face deformation. 
2. W a v e - g r o w t h  Rates  

In the previous section the linear stability of the 
liquid film flow with the effect of the electrostatic field 
is examined in the long wave limit, In order to un- 

derstand the effect of the electric field on the stability 
for larger wave numbers, the eigenvalue problem (26)- 
(29) needs to be solved numerically. The Orr-Sommer- 
feld Eq. (26) is a 4th-order complex ordinary differen- 
tial equation with the complex two-point boundary val- 
ues (27)-(29) and this can be solved by using a shoot- 
ing method. Here for one method to observe the sta- 
bility regime the wave-growth rates are computed for 
R e = 5  and R e :  20. These two Reynolds numbers  are 
selected for example calculations since the critical Re- 
ynolds number  resulted from the long wave limit, i.e., 

from the Eq. (31), is 8.3 [-=5/6 cot (0.1 tad.)] in the 
absence of electric field, that is, the flow will l:,e stable 
at Re 5 and unstable at R e :  20 as a-->0. At R e = 5  
the wave number  ct versus the imaginary wave speed 
q is plotted in Fig. 8 for the cases of F = 0  and F = 1 0 0  
kV/cm (K=2.73X 104) combined without and with sur- 
face tension effect (Ca :1 .35•  For positive (z, 
if q is negative, the flow is linearly stable, while if 
c, is positive, the flow is linearly unstable. Note that 
with surface tension in both K--0 and K = 2 7 3 •  

the flow is much more stable than the case without 
surface tension. The most unstable case is the flow 
with electric field and at the same time without sur- 
face tension as we can expect from the thin-film limit 
model. With electric field and surface tension the most 
unstable wave number  is about 0.015 (see b in Fig. 
8). In Fig. 9 the growth rates are depicted at Re=20.  
t tere  the increased Reynolds number  make.'~ K de- 
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crease and Ca increase, i.e., K = 6.82 • 10 a and Ca = 5.4 
• i0 -s. Without the K effect, that in the long wave 
limit the flow at this Reynolds number is unstable 
is expected from the analysis in the section 3. The 
qualitative phenomena of growth rates in the four ca- 
ses of flow are similar to those in Fig. 8 except that 
all flows are unstable as ct--->0. As Reynolds number 
increases the most unstable wave number is getting 
bigger, that is, the system becomes unstable even in 
a smaller wave length. 

CONCLUSIONS 

The purpose of this investigation is to study the 
instabilities in the interaction of an electrostatic field 
with a thin liquid film flowing down an inclined plane, 
and to examine the long-wave modes of the film flow 
with the electric potential of a Gaussian function. The 
electrostatic field over the film flow has perturbed 
the interface under the charged foil due to the effect 
on the change of the normal stress condition and then 
induced a traveling wave to be considered for its sta- 

bility. 
The linear stability conditions are derived for the 

approximation models of Re=O(1) ' and  Re=O(1/~). 
The result of lubrication model coincides with the re- 
sult from the Orr-Sommerfeld equation in the long- 
wave limit, while the Karman-Pohlhausen approxima- 
tion has a different form due to the large magnitude 
of the Reynolds number and the assumed parabolic 
velocity profile. In the static-state case considered for 
reference the flow is always stable since there is only 
stabilizing effects of gravity and surface tension on 
the perturbed liquid film. The linear stability analysis 
indicates that the presence of the electric field reduces 
the value of the critical Reynolds number at which 

the flow becomes unstable. 
The evolution equations for the thin-film approxi- 

mate models allow easy predictions of the deformation 
of the interface with the electric potential of a Gaus- 
sian function. In the case of small Reynolds number 
Re=:3.78, the film flow becomes stable as the pertur- 
bed wave is traveling in the down stream. However 
at Re = 189.0 the wave develops into a shock and the 
liquid filmis unstable. To confirm the effect of the 
electric field on the stability when wave number in- 
creases, the Orr-Sommerfeld equation is solved numer- 
ically to show the wave-growth rates. Four kinds of 
flow systems are considered, i.e., a) K=0,  Canoe, b) 
K~:0, Car c) K=0,  C a = ~  and d) Kr Ca=oc. 
The most unstable case is d), i.e., the flow with the 

electric field and without the surface tension. [ks Rey- 
nolds number increases, the range of unstable wave 
numbers is increased for all the four cases. 
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